Fabrication and Deformation of Metallic Glass MicroLattices
نویسندگان
چکیده
Recent progress in microand nanofabrication techniques enables the creation of hierarchically architected microlattices with dimensional control over six orders of magnitude, from centimeters down to nanometers. This hierarchical control facilitates the exploration of opportunities to exploit nano-sized material effects in structural materials. In this work, we present the fabrication, characterization, and properties of hollow metallic glass NiP microlattices. The wall thicknesses, deposited by electroless plating, were varied from 60nm up to 600nm, resulting in relative densities spanning from 0.02 to 0.2%. Uniaxial quasi-static compression tests revealed two different regimes in deformation: (i) Structures with a wall thickness above 150nm failed by catastrophic failure at the nodes and fracture events at the struts, with significant microcracking and (ii) Lattices whose wall thickness was below 150nm failed initially via buckling followed by significant plastic deformation rather than by post-elastic catastrophic fracture. This departure in deformationmechanism from brittle to deformable exhibited by the thin-walled structures is discussed in the framework of brittle-to-ductile transition emergent in nano-sized metallic glasses.
منابع مشابه
Accurate Stiffness Measurement of Ultralight Hollow Metallic Microlattices by Laser Vibrometry L. Salari-Sharif & L. Valdevit
Recent progress in advanced manufacturing enables fabrication of macro-scale hollow metallic lattices with unit cells in the millimeter range and sub-unit cell features at the submicron scale. If designed to minimize mass, these metallic microlattices can be manufactured with densities lower than 1 mg/cm3, making them the lightest metallic materials ever demonstrated. Measuring the compressive ...
متن کاملAccurate Stiffness Measurement of Ultralight Hollow Metallic Microlattices by Laser Vibrometry
Recent progress in advanced manufacturing enables fabrication of macro-scale hollow metallic lattices with unit cells in the millimeter range and sub-unit cell features at the submicron scale. If designed to minimize mass, these metallic microlattices can be manufactured with densities lower than 1 mg/cm3, making them the lightest metallic materials ever demonstrated. Measuring the compressive ...
متن کاملHybrid Hollow Microlattices With Unique Combination of Stiffness and Damping
Hybrid micro-architected materials with unique combinations of high stiffness, high damping, and low density are presented. We demonstrate a scalable manufacturing process to fabricate hollow microlattices with a sandwich wall architecture comprising an elastomeric core and metallic skins. In this configuration, the metallic skins provide stiffness and strength, whereas the elastomeric core pro...
متن کاملLow temperature formation Silver-Copper alloy nanoparticles using hydrogen plasma treatment for fabrication of humidity sensor
In this paper, a novel method of producing bi-metallic alloy nanoparticles at low temperatures using hydrogen bombardment of thin films, deposited on glass substrates, is introduced. Optical and morphological characteristics of the nanoparticles were extensively studied for various conditions of plasma treatment, such as plasma power density, temperature, duration of hydrogen bombardment, thick...
متن کاملLow temperature formation Silver-Copper alloy nanoparticles using hydrogen plasma treatment for fabrication of humidity sensor
In this paper, a novel method of producing bi-metallic alloy nanoparticles at low temperatures using hydrogen bombardment of thin films, deposited on glass substrates, is introduced. Optical and morphological characteristics of the nanoparticles were extensively studied for various conditions of plasma treatment, such as plasma power density, temperature, duration of hydrogen bombardment, thick...
متن کامل